2.00 STUD FRAMING
2.01 All field cutting of studs must be done by sawing, shearing, or plasma cutting. Other torch cutting methods of cold-formed members are unacceptable.
2.02 No notching or copsing of studs is allowed, unless otherwise detailed within this drawing package.
2.03 Splicing of studs is not allowed, unless otherwise detailed within this drawing package.
2.04 Framing fabrication is to ensure put through alignment when assembling the stud and member fit within the holes made in the stud. Failure to follow this procedure will result in possible damage to the member.
2.05 Design assumes condition to be final fabrication and installation. Temporary bracing (by others) or other means of stabilization may be required until final framing is complete and/or final condition.
2.06 Spreader wall framing shown above a window, and having connections to the top and bottom of the same beam, or having a single connection to a beam, and a kicker to another structural element, may require slip connections at the head of the window. In such situations, the engineer of record for guidance before cutting voids.
2.07 Minimum of two studs at the corner of the wall addressed in this submittal unless noted otherwise in the contract documents or this drawing package.
2.08 Use splice or slip connections or other means of stabilization when cutting holes in bearing walls (interior or exterior) unless noted otherwise in the contract documents or the drawing package.
2.09Joist or roof member must bear directly over stud. If not, a structural distribution member (designated accordingly) is required on top of Joist for proper bearing and anchoring.
2.10 isostructural bearing or toe-in must be directly over plate or studs. If not, a structural distribution member (designated accordingly) is required on top of plate for bearing purposes.
2.11 All headers built-in beams are to be constructed with UNIFORNCHEI material only.
2.12 Splicing of headers is not allowed, unless otherwise detailed within this drawing package.
2.13 All holes are required in the metal studs or joists, contact a licensed professional engineer for guidance before cutting holes.
2.14 Per the AISI Standard for Cold-Formed Framing - Wall Design, the maximum allowable gap (measured between the web of the stud and the web of the track for a stud seated in a track) is 0.0966" (measured between the web of the stud and the web of the track for a stud seated in a track) 0.0966". For stud seated in a track, the thickness of the stud web and the web of the track are reduced by 0.0966" to achieve the desired gap. Failure to do so could result in serviceability problems in the future.

6.00 GENERAL
6.01 Design performed in accordance with the 2016 AISI Specification for the Design of Cold-Formed Steel Structural Framing.
6.02 The latest edition of the American Iron and Steel Institute (AISI) "Code of Standard Practice for Cold-Formed Steel Structural Framing" shall be used as the reference to standard practices.
6.03 Dimensions shown in this shop drawing package are for design reference only. Contract Drawings shall be used to determine exact dimensions and shop fabrication shall be done in accordance with the Contract Drawings. All field cutting of studs to length. Lateral bracing must be installed at the time the wall is erected. Failure to do so could result in serviceability problems in the future.
6.04 All window and door units are assumed to apply load to the surrounding metal framing uniformly (except for connection and attachment clips, etc.).
6.05 Other than noted otherwise in this drawing package, all field cutting of studs must be done by sawing, shearing, or plasma cutting. Other torch cutting methods of cold-formed members are unacceptable.
6.06 Failure to do so could result in serviceability problems in the future.
SECTION A-A

SECTION AT ROOF TRELLIS

IQHQ - Block 2A
San Diego, California

Project Location:
Engineer:
Drawn:
Revisions:
Reviewed:
Project Number:
Date:
Sheet Title:
Sheet No.

ClarkDietrich Sales:
Prepared For:
Brady SoCal, Inc.
8100 Center Street
La Mesa, California
(t) (619) 462-2600
(f) (619) 465-3805
Michael Leahy
Jennifer Sexton
(t) (760) 707-0152
jennifer.sexton@clarkdietrich.com
John Maxim
(t) (949) 337-2527
john.maxim@clarkdietrich.com

ENGINEERING DESIGN INC.
CDED Office Locations:
780 James P. Casey Road
Bristol, CT 06010
2262 Rutherford Road, Suite 104
Carlsbad, CA 92008
toll free 877.832.3206
fax 877.832.3208

Property of ClarkDietrich Engineering Design Inc. (CDED).
These drawings may not be copied, reproduced, used or implemented in any way, in part or in whole, without the written consent of CDED. All common law rights of copyright are hereby specifically reserved.

Copyright © CDED

2022