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ii CFS Bracing Design Using Combinations of Discrete and Sheathing Bracing 

PREFACE 

This report summarizes efforts related to establishing the behavior and design of cold-formed 
steel wall assemblies potentially braced by discrete steel bracing and wall sheathing. 
 
The report and associated spreadsheets for the project are posted by the researcher at: 
http://jhir.library.jhu.edu/handle/1774.2/62986 
 
The related test report is posted by the researcher at: 
http://jhir.library.jhu.edu/handle/1774.2/62115 

http://jhir.library.jhu.edu/handle/1774.2/62986
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Executive Summary 
 
The objective of this report is to summarize efforts related to establishing the behavior and design 
of cold-formed steel wall assemblies potentially braced by discrete steel bracing and wall 
sheathing.  
Cold-formed steel wall assemblies are typically designed with discrete steel braces; however, the 
predicted accumulation of brace forces in these systems can lead to demands at odds with past 
successful practice. At the same time, testing on sheathing braced wall studs demonstrate the 
effectiveness of sheathing bracing, but questions persist about their effectiveness in extreme 
conditions. It is hypothesized that a combined bracing system could provide adequate strength 
from the steel system under extreme (environmental) conditions and benefit from the effectiveness 
of sheathing bracing in service and other conditions.    
A focused series of experiments on wall stud assemblies in compression with different 
combinations of discrete bracing and sheathing bracing were completed.  The testing indicated that 
sheathing bracing dominates the braced stud response and that brace forces in discrete braces do 
not accumulate when sheathing is present. 
A series of spreadsheets were developed to provide engineers with a clear and efficient means to 
predict the strength of studs with both discrete bracing and sheathing bracing. The proposed 
strength calculations agree with the limit states observed in past and current testing; however, 
unlike in previous work where predicted strengths were conservative, in the testing conducted in 
this project the predicted strength is from 7 to 19% unconservative depending on the details of the 
tested specimen. 
Enabling combined bracing in cold-formed steel design requires modifications to AISI S100 and 
AISI S240 and a series of ballots that would be necessary for adoption of the new methods are 
detailed and priorities for adoption given. 
It is recommended that additional testing and design aids be developed.  
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1 Introduction 
 
Cold-formed steel (CFS) gravity, load bearing, walls consist of vertical lipped channel studs 
capped with horizontal plain channel track – typically fastened together by self-drilling screws. 
The open cross-section lipped channel studs have relatively weak torsional stiffness and are 
oriented such that minor axis bending is in the plane of the wall. Without bracing of the studs, the 
wall capacity would be severely limited. 
The most common form of wall bracing are small channels, known as cold-rolled channel (CRC) 
bridging, that are installed through holes (punchouts/knockouts) in the stud web. These bridging 
channels provide minor-axis flexural bracing and depending on their stiffness and installation 
details can also restrict torsion of the stud. Of course, an isolated bridging channel must be resolved 
to a stiff member so that the bracing forces can be carried out of the wall. However, predictions of 
the accumulated brace force and stiffness requirements for an entire wall can be significant and 
result in design requirements that are not aligned with long-standing practice. 
From a practical standpoint most CFS walls will have finish applied to both sides of the wall, this 
finish typically includes sheathing which is directly applied to the stud flanges. Gypsum board 
sheathing attached with screws is the most common form of finish. Once installed the gypsum 
board can also serve to brace the studs – particularly if installed on both sides such sheathing can 
be an effective restraint against both minor-axis and torsional deformations of the stud. A 
comprehensive series of research on the role of sheathing in bracing cold-formed steel walls, 
summarized in Schafer (2013) and supported by the efforts in Vieira (2011), Vieira and Schafer 
(2013), Peterman (2012), and Peterman and Schafer (2014) unequivocally demonstrated that 
sheathing bracing could effectively stabilize cold-formed steel stud walls, and developed a 
supporting design method. However, since many finish systems are non-structural concerns persist 
as to whether such systems will be available during construction or during an overload or other 
critical loading condition (e.g., fire). 
In practice, both steel discrete bridging and wall sheathing exist in a cold-formed steel stud wall. 
It is desired to know how these two systems work when under load and acting as bracing. What is 
the impact of not fully resolving (anchoring) the bridging? What is the impact of the construction 
sequence on the relative bracing forces between the bridging and the sheathing? When both 
bridging and sheathing are present, which system actually carries the bracing demands? A focused 
series of tests was developed to explore these questions.  
The design method developed in Schafer (2013) is relatively involved. Specifically (a) the stiffness 
supplied by the sheathing to the stud as bracing must be calculated; (b) this stiffness must be 
included when solving for the global buckling load which is now coupled in terms of major axis 
flexure, minor axis flexure, and torsion; (c) traditional column design with these buckling loads 
must be completed, and finally (d) the sheathing-to-stud connections must be checked for 
adequacy. It is desired to aid engineers with performing and understanding these steps and so the 
method was implemented in a series of spreadsheets and extended to cover discrete bracing.   
This document is the final report for a project funded by the American Iron and Steel Institute and 
the Steel Framing Industry Association to address “CFS Bracing Design Using Combinations of 
Discrete and Sheathing Bracing”.  
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2 Testing 
 
Compression testing was conducted on an 8 ft × 8 ft CFS frame with 362S162-68 [50 ksi] studs 
spaced 2 ft apart and attached at top and bottom to two 8-ft long 362T125-68 [50 ksi] tracks. The 
studs had standard obround punchouts with dimensions of 1 1/2 in. x 4 in. When specified 
150U150-54 CRC bridging was supplied through the punchout at the mid-height of the stud. The 
bridging was attached to the studs with a 1 ½ in. x 1 ½ in. 54 mil angle connected with #10 steel-
to-steel fasteners. When specified the CRC bridging was anchored to a fixed support at one end. 
When specified ½ in. lightweight sheetrock (installed vertically) with #6 @ 12 in. o.c. screw 
fasteners were added to one or both sides of the wall. The steel for a typical wall is provided in 
Figure 1.  
The test results are detailed in a separate report: Qian and Schafer (2020) and summarized in a 
paper: Schafer et al. (2020). Please see these materials for details and key findings from the testing. 
Most importantly the testing indicated definitively that bridging forces only accumulate for 
translation, not for torsion, and this accumulation only occurs when sheathing is not present. When 
sheathing is present the sheathing, not the bridging, dominates the bracing response.  

  

 
Figure 1. Elevation of Typical CFS Frame, Nomenclature, and Sensors  
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3 Elastic Buckling Calculations/Spreadsheets 
 
The elastic buckling load is necessary for design. The elastic buckling calculations for a stud under 
compression, braced by discrete bridging, strapping, and/or sheathing and buckling in either local, 
distortional, and/or global buckling are provided through a series of spreadsheets. The provided 
spreadsheets are: 

• 01_Pcre_analytical_v10.xlsm 

• 02_Pcrd_analytical_v2.xlsx 

• 03_Pcrl_Pcrd_database_v2.xlsx 
Note, these same elastic buckling values can be determined using general purpose finite strip 
elastic buckling tools such as CUFSM, THIN-WALL, etc. or general purpose plate/shell finite 
element tools such as ABAQUS, ANSYS, etc. The spreadsheets provide solutions without 
recourse to analysis tools and could be directly incorporated into in-house design solutions. 
 
A video has been provided for basic use of the spreadsheets (Video_spreadsheet_explainer.mp4). 
Here we describe the function of each spreadsheet and address the basic source material. 
Complete source references and full details are provided within the spreadsheets themselves. 
 

3.1 Local (𝑷𝒄𝒓𝓵) and Distortional (𝑷𝒄𝒓𝒅) Buckling (03_Pcrl_Pcrd_database_v2.xlsx) 
Local and distortional buckling for pinned warping free boundary conditions was calculated for 
every structural section in the SFIA product technical catalog (SFIA 2018) using CUFSM and 
provided as a database. In addition, the approximate finite strip method for members with holes 
recommended in AISI S100-16 Appendix 2 was adopted and provided for all Steel Framing 
Industry Association (SFIA) sections with standard punchouts. This database provides the 
necessary local and distortional buckling loads for bare steel stud sections with and without 
punchouts.    

3.2 Distortional Buckling (𝑷𝒄𝒓𝒅) with Sheathing Restraint (𝒌𝝓) 
(02_Pcrd_analytical_v2.xlsx) 

AISI S100-16 Section 2.3.1.3 and 2.3.2.3 are implemented in this spreadsheet to provide the 
distortional buckling strength considering rotational restraint provided by sheathing.  

3.3 Global Buckling (𝑷𝒄𝒓𝒆) (01_Pcre_analytical_v10.xlsm) 
Global buckling for a stud considering the beneficial restraint provided from bridging, discretely 
fastened sheathing, or strap are provided for all stud sections in this spreadsheet. This spreadsheet 
provides a number of ancillary calculations in addition to the final elastic buckling calculation that 
aid designers. 
Gross and net section properties for any SFIA stud are automatically populated based on a database 
of properties provided in separate sheets within the spreadsheet. 
For sheathing, based on the sheathing type, stud spacing, and fastener type and spacing the discrete 
restraint provided at the attachment points to the studs is calculated per Vieira and Schafer (2013) 
for shear restraint (𝑘,) per Vieira and Schafer (2013) for out-of-plane restraint (𝑘-), and per an 
adaptation of AISI S240 Appendix 1 for (𝑘.). See Schafer (2013) report for further details on 
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sheathing bracing including illustrative examples for 𝑘,, 𝑘- and 𝑘. that can be compared with the 
spreadsheet output. 
For bridging, only through the punchout CRC bridging attached by screw fastened clip angles is 
explicitly considered. For other cases there is an option to manually enter the provided bracing 
stiffness. The bracing stiffness is drawn from the work of Sputo and Green (Green et al. 2006) as 
detailed in their student Urala’s (2004) M.S. thesis. The bridging channel, connection (clip angle, 
fasteners, stud web), and kicker/strongback are considered as springs in series to determine the 
discrete stiffnesses (𝑘,) supplied to the stud. The connection stiffness, which is generally the 
weakest stiffness in the series, is based directly on the work of Urala (2004), but with interpolation 
allowed. For 𝑘, the available data covers studs from 33 to 97 mil and webs from 3.62 to 8 in. deep. 
Separate tests on the rotational restraint of the connection are also available from Urala (2004) and 
these provide 𝑘. for screw fastened clip angles and CRC bridging attached to studs from 68 to 97 
mil and webs from 3.62 to 6 in. deep. The final bridging stiffness values are automatically 
populated into the spreadsheet. 
The spreadsheet also includes the condition of strap bracing, where screw fastened strap are 
attached to the stud flanges. For strapping, screwed to the flange of the studs, the in-plane bracing 
stiffness (𝑘,) is calculated using the same spring in series approach as for bridging, but with the 
connector stiffness based on AISI S310-16 Section D5.2. 

The spreadsheet then solves the global buckling problem. 
Specifics of the buckling solution follow. The solution is adapted from Vieira and Schafer (2013) 
and Li (2011). The elastic buckling calculation is an eigenvalue problem: 

(𝐾% − 𝜆𝐾/)𝜙 = 0 

where the eigenvalue 𝜆 is the buckling load (𝑃!"%) and the eigenvector 𝜙 is the buckling shape and 
where 𝐾%  is the elastic stiffness of the stud against 𝑥𝑥  and 𝑦𝑦-axis bending (𝐸𝐼,, , 𝐸𝐼-- ) and 
torsion (𝐺𝐽, 𝐸𝐶0) including additional stiffness supplied by j different bracing springs 𝑘,1, 𝑘-1 and 
𝑘.1 located at ℎ,21 , ℎ-21 in the section and 𝑧21 along the length and may be expressed as: 
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where 𝐼3 and 𝐼4 are a function of the longitudinal shape function 𝑍, which when a sine series is 
employed becomes:  
𝑍[2] = sin =245

6
>, 𝐼& = ∫ 𝑍[2]𝑍[(]𝑑𝑧 =

6
0

6
.
, 𝐼&%' = 𝑍[2]B𝑧+%C𝑍[(]B𝑧+%C = sin. =245!"

6
>, and  𝐼# = ∫ 𝑍[2]77 𝑍[(]77 𝑑𝑧 =

2#4#

.6$
6
0  

 
and 𝐾/ is the load dependent geometric stiffness that degrades the elastic stiffness under axial load 
with 𝑥5 and 𝑦5 the distance from the shear center to the centroid in the cross-section plane:  

𝐾8 = D
𝐼, 𝐼, −𝑧9𝐼,
	 𝐼, 𝑥9𝐼,

𝑠𝑦𝑚 − 	 𝑟9.𝐼,
H 

and the additional terms are 
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𝑟9. = 𝑥9. + 𝑦9. + (𝐼$$ + 𝐼"")/𝐴, and   𝐼, = ∫ 𝑍[2]7 𝑍[(]7 𝑑𝑧 =
2%4%

.6
6
0  

 
A lipped channel (C-shape) cross-section at longitudinal location 𝑧 with a single set (𝑗) of discrete 
springs attached to Face 1 of the section is depicted in Figure 2 the summation of these springs 
consistent with 𝐾% , and the solution for various 𝑚  longitudinal terms is provided in the 
spreadsheet.  

 
Figure 2. Cross-section with a set of discrete springs from bracing 

The video provided for basic use of the spreadsheets (Video_spreadsheet_explainer.mp4) covers 
additional practical details in the use of the spreadsheet and, for example, how to use the 
spreadsheet to develop the global buckling solution for an unbraced stud, a stud braced only with 
through the punchout CRC bridging, a stud braced with CRC bridging and gypsum board on one 
side, and finally a stud with CRC bridging and gypsum board on both sides. 
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4 Strength Prediction and Comparison to Testing 
 

A spreadsheet is provided for the strength prediction:  

• 04_Pn_DSM_v2.xlsx 

This spreadsheet implements AISI S100-16 Chapter E for compression members without 
modification. The strength is a function of the gross and net squash load (𝑃- and 𝑃-6%7) and the 
local, distortional, and global buckling loads (𝑃!"ℓ, 𝑃!"$ and 𝑃!"%). The buckling loads reflect the 
cross-section, including holes, and the presence of bridging, strapping, and sheathing and their 
calculation using the spreadsheets is detailed in the video which accompanies this report 
(Video_spreadsheet_explainer.mp4).  
 
For the walls tested and reported in Qian and Schafer (2020) Table 1 provides the yielding loads, 
elastic buckling loads and characteristics, predicted strength, and observed strength. For the 
global elastic buckling mode the shape is summarized in terms of the components of its in-plane 
buckling deformation (u – minor axis flexure, v - major axis flexure, f - torsion/twist, and m – 
mode number). The global buckling load and mode changes dramatically as the bracing is 
introduced. The predicted strength and limit states are in good qualitative agreement with the 
testing, but strength agreement is not as good as previously conducted wall tests with sheathing 
alone (Vieira and Schafer 2013) and additional discussion is warranted.  
 

Table 1 Predicted and observed compressive strength for CFS-framed wall tested (Qian and Schafer 
2020) with combinations of discrete CRC bracing and gypsum sheathing 

  Yielding Buckling Pred.**  Observed 
        F           
Condition Py Pynet Pcre u v f m Pcrd Pcrl Pn LS Ptest/5 LS 
  (kips) (kips) (kips)         (kips) (kips) (kips)   (kips)   
Unbraced 26.2 20.8 5.7 1.0 0.0 0.0 1 31.9 31.5 5.0 G1    
CRC bridging 26.2 20.8 18.1 0.0 -0.3 1.0 2 31.9 31.5 14.3 G2 13.3 FTB2 
CRC* + 1 Side Gyp 26.2 20.8 22.5 0.4 -0.2 0.9 2 31.9 31.5 16.1 G2 13.5 TB2 

CRC + 2 Side Gyp 26.2 20.8 32.6 0.0 1.0 -0.2 1 37.4 31.5 
18.4 D (hole) 

15.1 LB@Hole 
(TB/FB) 18.7 G1 

*note, the CRC is not anchored in this test – the gypsum sheathing must resolve the bridging force 
**nominal predictions based on t = 0.0713 in. Fy = 50 ksi, measured stud t = 0.0691 in. Fy = 52 ksi 

For the “CRC bridging” case of Table 1 (also known as the “all steel” case) the bridging 
successfully restrains minor-axis flexure (u) and the stud fails in a global (G) limit state of 2nd 
mode flexural-torsional (v-f or FTB) buckling. AISI S100-16 Chapter E with the appropriate 
global buckling load accurately predicts the limit state and the observed strength is 93% (13.3 
kips/14.3 kips) of the predicted strength. The section is “fully effective” in local buckling – i.e. no 
local-global interaction is predicted, and none is observed. The agreement for the all steel case is 
deemed acceptable – though broader study may be warranted. 
For the case with (unresolved) CRC bridging, and gypsum sheathing on 1 side of the wall, the test 
fails predominately in restrained-axis 2nd mode torsional buckling (TB2). The predicted limit state 
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is also 2nd mode global buckling, dominated by torsion. However, in this case the test strength is 
only 84% of the predicted strength. The single stud test strength for the CRC bridging with one-
side of gypsum (13.5 kips) is nearly the same as the CRC bridging alone (13.3 kips) perhaps 
leading on to think the gypsum board has little effect; however, the test with the gypsum had a 
different failure mode, sustained greater deformation, and had a much more benign post-peak 
response than the test with CRC bridging alone. The case with OSB sheathing only on one side in 
Vieira and Schafer (2013) did not have CRC bridging, but did have good agreement with this same 
basic method. A definitive explanation for the discrepancy between the predicted and tested 
strength has not been developed at this time. 
For the case with CRC bracing and gypsum sheathing on both sides of the wall, the tested strengths 
per stud across the three tests in this category were 14.4, 14.5, and 16.3 kips vs. a predicted strength 
of 18.4 kips. Resulting in a test-to-predicted of 82% on average, ranging from 78% to 88%. For 
comparison Vieira and Schafer (2013) tested similar walls with gypsum sheathing on both sides 
and the mean per stud strength was 19.3 kips, while isolated and sheathed studs had a mean stud 
strength of 21.4 kips – both exceeding the test results presented here. Key differences in the earlier 
testing included: studs did not have holes, normal weight gypsum attached at 6 in. o.c. was 
employed, CRC bridging was not present. Test-to-predicted ratios in Vieira and Schafer (2013) 
under these conditions were in good agreement. 
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5 Draft Ballots 
 
5.1 Previous sheathing braced design ballots 
Before discussing new ballots, it is necessary to review the progress of adoption for the ballots 
proposed for revisions to sheathing braced design in the Schafer (2013) final report, Table 2. These 
ballots are needed by engineers, in some form, to enable a stiffness-based solution to elastic 
buckling with combined bracing. 

Table 2 Status and resolution of sheathing braced design ballots from Schafer (2013) 

Sheathing Braced (SB) Design 
Draft Ballots from Schafer (2013) 

Current status (June 
2020) 

Proposed Resolution 

SB Ballot 1: Lateral Restraint 
Provided by Fastener-Sheathing 
System (kx) 

Never adopted Provide in commentary to 
new AISI S100 Appendix 3 
on stiffness 

SB Ballot 2: Testing for Local Lateral 
Restraint of Sheathed Members ( ) 

Never adopted Ballot as new AISI Test 
Standard (TS) 

SB Ballot 3: Vertical Restraint 
Provided by Fastener-Sheathing 
System (ky)  

Never adopted Provide in commentary to 
new AISI S100 Appendix 3 
on stiffness 

SB Ballot 4: Rotational Restraint 
Provided by Fastener-Sheathing 
System ( ) 

Adopted in AISI S240 
Appendix 1, not 
available in AISI S100 

Provide in commentary to 
new AISI S100 Appendix 3 
on stiffness (remove from 
AISI S240 Appendix 1) 

SB Ballot 5: New Test Standard, 
Similar to AISI S901, for Rotational 
Restraint ( ) 

Adopted as AISI S918-
17 

No action required 

SB Ballot 6: Commentary Addition to 
Appendix 1 Direct Strength Method 
for Elastic Stability of Sheathed Walls 
with emphasis on using the Finite 
Strip Method 

Never adopted Provide as commentary to 
AISI S100 Appendix 2 
elastic buckling analysis 

SB Ballot 7: Clean up Distortional 
buckling notation in AISI-S100 
C3.1.4 and C4.2 

Adopted in AISI S918-
17 and next edition of 
AISI S100 (Ballot 
CS17-437).  

No action required 

SB Ballot 8: Add new section to C4.1 
for Flexural-Torsional Buckling with 
Sheathing 

Never adopted Ballot for AISI S100, but in 
Appendix 2 or I4 

SB Ballot 9: Add new section to 
C3.1.2.3 for Lateral-Torsional 
Buckling with Sheathing 

Never adopted Ballot for AISI S100, but in 
Appendix 2 or I4 

kx

kφ

kφ
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SB Ballot 10: Clean up Sheathing-
Braced Design Charging Language in 
S100 

Never Adopted Abandon 

SB Ballot 11: Fastener (Bearing and 
Pull-through) Demands [Required 
Loads]  

Never Adopted Add to commentary in new 
AISI S100 Appendix 3 on 
stiffness, or to AISI S240, 
or to Design Guide 

SB Ballot 12: Fastener (Bearing and 
Pull-through) Capacity [Available 
Loads]  

Never Adopted Ballot for AISI S100 J4 
Screw Connections 

SB Ballot 13: Strength Table (Mock 
Up) for COFS or Design Manual 

Never Implemented Add to AISI D100 

   
In short, the proposed AISI S100 Appendix 3 for stiffness of connections needs to be completed 
and enabled so engineers have access to the stiffness values needed in the bracing elastic buckling 
calculations. 
From the perspective of AISI S240, design of steel studs follows either all steel design or sheathing 
braced design. Enabling combined bracing could involve (a) creating a new third category: 
combined bracing, or (b) modification of sheathing braced design. The option explored here is the 
modification of sheathing braced design, i.e. option (b).  

Beyond the ballots of Table 2 the following ballots are proposed. 
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5.2 Draft Ballot CB1: Enable Combined Bracing in AISI S100  
A simple means to enable strength calculations for combined bracing conditions would be to 
mirror the AISI S100-16 provisions in I6.1 for Metal Roof and Wall Systems to I4 Cold-Formed 
Steel Light-Frame Construction. AISI S240 could provide simplifications, while AISI S100 
provides the basic methodology. This is not absolutely necessary, but since the method parallels 
I6 and also places the I4.1 all steel stud design method in context it is recommended. Draft 
provisions of the enabling language in AISI S100: 

I4 Cold-Formed Steel Light-Frame Construction  

The	design	and	installation	of	structural	members	utilized	in	cold-formed	steel	repetitive	framing	
applications	shall	be	in	accordance	with	AISI	S240	and,	as	applicable,	the	seismic	requirements	of	
AISI	S400.	 

I4.1 All-Steel Design of Wall Stud Assemblies  

Wall	stud	assemblies	using	an	all-steel	design	shall	be	designed	neglecting	the	structural	
contribution	of	the	attached	sheathings	and	shall	comply	with	the	requirements	of	Chapters	
D	through	H	 

I4.2 Sheathing Braced Design of Wall Stud Assemblies  

Wall	stud	assemblies	using	sheathing	braced	design	are	permitted	to	consider	discrete	
bracing	and	the	bracing	and	composite	action1	provided	by	attached	sheathing	and	shall	
comply	with	the	requirements	of	Chapters	D	through	H. 

I4.2.1 Compression Member Design  

The	nominal	axial	strength	[resistance],	Pn,	shall	be	the	minimum	of	Pne,	Pnℓ,	and	Pnd	
as	calculated	in	accordance	with	Chapter	E.	It	shall	be	permitted	that	Fcre	in	E2	
and/or	Pcrd	in	E4	include	the	effect	of	bridging,	strapping,	and/or	sheathing.	For	
members	meeting	the	geometric	and	material	limits	of	Section	B4,	the	safety	and	
resistance	factors	shall	be	as	follows:	Ωc	=	1.80	(ASD)	fc	=	0.85	(LRFD)	=	0.80	(LSD).	
For	all	other	members,	the	safety	and	resistance	factors	in	Section	A1.2(c)	shall	
apply.	The	available	strength	[factored	resistance]	shall	be	determined	in	accordance	
with	the	applicable	method	in	Section	B3.2.1,	B3.2.2	or	B3.2.3.	 

I4.2.2 Flexural Member Design  

The	nominal	flexural	strength	[resistance],	Mn,	shall	be	the	minimum	of	Mne,	Mnℓ,	
and	Mnd	as	calculated	in	accordance	with	Chapter	F.	It	shall	be	permitted	that	Fcre	in	
F2	and/or	Mcrd	in	F4	include	the	effect	of	bridging,	strapping,	and/or	sheathing.	For	
members	meeting	the	geometric	and	material	limits	of	Section	B4,	the	safety	and	
resistance	factors	shall	be	as	follows:	Ωb	=	1.67	(ASD)	fb	=	0.90	(LRFD)	=	0.85	(LSD).	

 
1 Note, some members of the project monitoring task group were unsure if “composite action” should be included in 
the future ballot and thus this will be a matter for future discussion. 
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For	all	other	members,	the	safety	and	resistance	factors	in	Section	A1.2(c)	shall	
apply.	The	available	strength	[factored	resistance]	shall	be	determined	in	accordance	
with	the	applicable	method	in	Section	B3.2.1,	B3.2.2	or	B3.2.3.	 

5.3 Draft Ballot CB2: Re-scope Sheathing Bracing in AISI S240 B1.2 
The next obvious place to provide modification is to expand the design method options for Wall 
Studs in AISI S240. Draft provisions of the enabling language in AISI S240 are based on 
modifications to MS19-13A which updated AISI S240-15 to reference AISI S100-16 and is 
assumed to be a modestly better starting place for changes. First the scoping in AISI S240 B1.2 
could be clarified for sheathing bracing. 

B1.2.2 Wall Studs  

B1.2.2.1	Wall	studs	shall	be	designed	either	on	the	basis	of	all	steel	design,	or	on	the	basis	of	
sheathing	braced	design,	in	accordance	with	the	following:	 

(a)		All	Steel	Design.	Wall	stud	assemblies	using	all	steel	design	shall	be	designed	
neglecting	the	structural	bracing	and	composite-action	contribution	of	the	attached	
sheathings.	 

(b)		Sheathing	Braced	Design.	Wall	stud	assemblies	using	sheathing	braced	design	
are	permitted	to	consider	discrete	bracing	and	the	bracing	and	composite-action2	
provided	by	attached	sheathing.	shall	have	sheathing	attached	to	both	flanges	of	the	
wall	stud	or	sheathing	attached	to	the	one	flange	and	discrete	bracing	to	the	other	
flange.	The	stud	shall	be	connected	to	the	bottom	and	top	track	or	other	horizontal	
member(s)	of	the	wall	to	provide	lateral	and	torsional	support	to	the	wall	stud	in	the	
plane	of	the	wall.	Wall	studs	with	sheathing	attached	to	both	sides	that	is	not	
identical	shall	be	designed	based	on	the	assumption	that	the	weaker	of	the	two	
sheathings	is	attached	to	both	sides.	

B1.2.2.2	When	sheathing	braced	design	is	used,	the	construction	documents	shall	identify	
theany	sheathing	considered	to	supply	bracing	or	composite-action	as	a	structural	element.	 

B1.2.2.3	For	curtain	wall	studs	[…no	change	to	this	section,	redacted	for	space]	

B1.2.2.4	In	the	United	States	and	Mexico,	when	sheathing	braced	design	is	used,	the	wall	
studs	shall	also	be	evaluated,	considering	only	such	sheathing	that	is	in-place	during	
construction	and	able	to	withstand	conditions3	expected	during	the	life	of	the	assembly	
without	substantial	loss	in	stiffness,	without	the	sheathing	bracing	for	the	following	load	
combination4	

 
2 See footnote 1 regarding composite action. 
3 This provision was a topic of much discussion amongst the project monitoring task group. Implemented in this 
draft is a generic condition – concerns for the commentary would include primary concerns related to fire-fighting: 
sprinklers, fire hoses, etc., and secondary environmental concerns such as long term exposure to very high or very 
low humidity, more development with task groups in AISI COFS will be needed. Some in the PMTG also were 
interested in contemplating sheathing performance requirements to be allowed to use these proposed provisions. 
4 Final version of the ballot may point to ASCE 7 construction load combinations. 
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1.2D	+	(0.5L	or	0.2S)	+	0.2W		 	 	 	 	 	 	 (Eq.	B1.2.2-1)	

where	D	=	Dead	load,	L	=	Live	load,	S	=	Snow	load,	and	W=	Wind	load	 

B1.2.2.5	In	Canada,	the	provisions	for	sheathing	braced	design	shall	be	in	accordance	with	a	
theory,	tests,	or	rational	engineering	analysis	and	shall	comply	with	Chapters	E	and	F	of	AISI	
S100	[CSA	S136],	as	applicable.	

	

5.4 Draft Ballot CB3: Cleanup All Steel Design in AISI S240 B3.2 / B3.4 
AISI S240 Section B3.2 and B3.4 on Wall Stud Design should be modified to align with bracing 
provisions in AISI S100. This issue is separated out as it is not distinctly part of combined bracing; 
however, a benefit of combined bracing is in properly addressing the resolution of accumulated 
bracing forces.  

B3.2 Wall Stud Design  

Wall	studs	shall	be	designed	in	accordance	with	the	requirements	of	this	section.	

B3.2.1 Compression  

Wall	studs	shall	be	designed	for	compression	either	on	the	basis	of	all	steel	design,	or	on	the	basis	
of	sheathing	braced	design	with	both	ends	of	the	stud	connected	to	restrain	rotation	about	the	
longitudinal	stud	axis	and	horizontal	displacement	perpendicular	to	the	stud	axis,	in	accordance	
with	the	following:	

(a)	All	Steel	Design.	For	all	steel	design	of	wall	studs	in	compression,	Chapter	E	of	AISI	S100	
[CSA	S136]	shall	define	the	available	axial	strength	[factored	resistance].	The	effective	
length,	KL,	shall	be	determined	by	rational	engineering	analysis	or	testing,	or	in	the	absence	
of	such	analysis	or	tests,	Kx,	Ky	and	Kt	shall	be	taken	as	unity.	The	unbraced	length	with	
respect	to	the	major	axis,	Lx,	shall	be	taken	as	the	distance	between	end	supports	of	the	
member,	while	unbraced	lengths	Ly	and	Lt	shall	be	taken	as	the	distance	between	braces.	
For	distortional	buckling	iIf	the	discrete	bracing	fully	restricts	rotation	of	both	flanges	about	
the	web/flange	juncture,	the	distance	between	braces	shall	be	used	as	Lm	in	determining	the	
distortional	buckling	force	in	accordance	with	Sections	2.3.1.3	and	2.3.2.3	(as	applicable)	of	
AISI	S100	[CSA	S136]	Appendix	2.	If	the	discrete	bracing	spaced	at	distance	Lb	has	rotational	
stiffness	k*φ	against	rotation	of	both	flanges	about	the	web/flange	juncture	then	k*φ/Lb	
shall	be	used	as	kφ	in	accordance	with	Sections	2.3.1.3	and	2.3.2.3	(as	applicable)	of	AISI	
S100	[CSA	S136]	Appendix	2.	

B3.2.2 Bending  

Wall	studs	shall	be	designed	for	bending	either	on	the	basis	of	all	steel	design	or	on	the	basis	of	
sheathing	braced	design,	in	accordance	with	the	following:		

(a)		All	Steel	Design.	For	all	steel	design,	Chapter	F	of	AISI	S100	[CSA	S136]	shall	define	the	
available	flexural	strength	[factored	resistance].	For	distortional	buckling	if	the	discrete	
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bracing	fully	restricts	rotation	of	the	compression	flange	about	the	web/flange	juncture,	the	
distance	between	braces	shall	be	used	as	Lm	in	accordance	with	Sections	2.3.2.3	and	2.3.4.3	
(as	applicable)	of	AISI	S100	[CSA	S136]	Appendix	2.	If	the	discrete	bracing	spaced	at	
distance	Lb	has	rotational	stiffness	k*φ	against	rotation	of	the	compression	flange	about	the	
web/flange	juncture	then	k*φ/Lb	shall	be	used	as	kφ	in	accordance	with	Sections	2.3.2.3	and	
2.3.4.3	(as	applicable)	of	AISI	S100	[CSA	S136]	Appendix	2.	(Draft	Ballot	CB3)	

 

B3.4 Bracing 

 
B3.4.1 Intermediate Brace Design  

B3.4.1.1	For	bending	members,	each	intermediate	brace	shall	be	designed	in	accordance	with	
Section	C2.2.1	of	AISI	S100	[CSA	S136].	 

B3.4.1.2	For	axial	loaded	members,	each	intermediate	brace	shall	be	designed	in	accordance	with	
Section	C2.3	of	AISI	S100	[CSA	S136];	however,	it	shall	be	permitted	for	each	intermediate	brace	to	
be	designed	for	2%	of	the	design	compression	force	in	the	member.	 

B3.4.1.3	For	combined	bending	and	axial	loads,	each	intermediate	brace	shall	be	designed	for	the	
combined	brace	force	from	bending	determined	in	accordance	with	Section	C2.2.1	of	AISI	S100	
[CSA	S136]	and	from	compression	determined	in	accordance	with	Section	C2.3	of	AISI	[CSA	S136]	
or	2%	of	the	design	compression	force	in	the	member.	

B3.4.1.4	In	all	steel	design	accumulation	of	brace	forces	shall	be	considered5.	 

  

 
5 Note, some on the project monitoring task group argued for more prescriptive consideration preferring language 
such as “and addressed in the design details” as opposed to the more generic “considered” in this clause. 
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5.5 Draft Ballot CB4: Enable Combined Bracing in AISI S240 B3.2 / B3.4 
AISI S240 Section B3.2 and B3.4 on Wall Stud Design should be enabled to allow the new 
combined bracing provisions through expansion of sheathing braced design provisions. 

B3.2 Wall Stud Design  

Wall	studs	shall	be	designed	in	accordance	with	the	requirements	of	this	section.	

B3.2.1 Compression  

Wall	studs	shall	be	designed	for	compression	either	on	the	basis	of	all	steel	design,	or	on	the	basis	
of	sheathing	braced	design	with	both	ends	of	the	stud	connected	to	restrain	rotation	about	the	
longitudinal	stud	axis	and	horizontal	displacement	perpendicular	to	the	stud	axis,	in	accordance	
with	the	following:	

(a)	All	Steel	Design.	For	all	steel	design	of	wall	studs	in	compression,	Chapter	E	of	AISI	S100	
[CSA	S136]	shall	define	the	available	axial	strength	[factored	resistance].	The	effective	
length,	KL,	shall	be	determined	by	rational	engineering	analysis	or	testing,	or	in	the	absence	
of	such	analysis	or	tests,	Kx,	Ky	and	Kt	shall	be	taken	as	unity.	The	unbraced	length	with	
respect	to	the	major	axis,	Lx,	shall	be	taken	as	the	distance	between	end	supports	of	the	
member,	while	unbraced	lengths	Ly	and	Lt	shall	be	taken	as	the	distance	between	braces.	
For	distortional	buckling	iIf	the	discrete	bracing	fully	restricts	rotation	of	both	flanges	about	
the	web/flange	juncture,	the	distance	between	braces	shall	be	used	as	Lm	in	determining	the	
distortional	buckling	force	in	accordance	with	Sections	2.3.1.3	and	2.3.2.3	(as	applicable)	of	
AISI	S100	[CSA	S136]	Appendix	2.	If	the	discrete	bracing	spaced	at	distance	Lb	has	rotational	
stiffness	k*φ	against	rotation	of	both	flanges	about	the	web/flange	juncture	then	k*φ/Lb	
shall	be	used	as	kφ	in	accordance	with	Sections	2.3.1.3	and	2.3.2.3	(as	applicable)	of	AISI	
S100	[CSA	S136]	Appendix	2.	(Draft	Ballot	CB3)	

(b)	Sheathing	Braced	Design.	For	sheathing	braced	design	of	wall	studs	in	compression,	the	
available	axial	strength	[factored	resistance]	shall	be	determined	in	accordance	with	Chapter	
E	of	AISI	S100	[CSA	S136]	following	either	(i)	the	simplified	method	or	(ii)	the	analysis	
method.	

(i)	simplified	method:		The	stud	shall	have	sheathing	attached	to	both	flanges	of	the	
wall	stud.	The	unbraced	length	with	respect	to	the	major	axis,	Lx,	shall	be	taken	as	
the	distance	between	end	supports	of	the	member.	The	unbraced	length	with	
respect	to	the	minor	axis,	Ly,	and	the	unbraced	length	for	torsion,	Lt,	shall	be	taken	
as	twice	the	distance	between	sheathing	connectors,	but	not	less	than	12	in.	[305	
mm].	The	buckling	coefficients	Kx,	Ky,	and	Kt	shall	be	taken	as	unity.			

In	determining	the	distortional	buckling	strength,	the	rotational	stiffness,	kφ,	
provided	by	the	sheathing	to	the	wall	stud	shall	be	determined	in	accordance	with	
Appendix	1.	 

To	prevent	failure	of	the	sheathing-to-wall	stud	connection,	where	identical	gypsum	
sheathing	is	attached	to	both	sides	of	the	wall	stud	with	screws	spaced	at	a	
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maximum	of	12	inches	(305	mm)	on	center,	the	maximum	axial	nominal	load	
[specified	load]	in	the	wall	stud	shall	be	limited	to	the	values	given	in	Table	B3.2-1.	 

 

(i)	analysis	method:		The	effective	length,	KL,	shall	be	determined	by	rational	
engineering	analysis	or	testing,	or	in	the	absence	of	such	analysis	or	tests,	Kx,	Ky	and	
Kt	shall	be	taken	as	unity.	The	unbraced	lengths	Lx,	Ly	and	Lt	shall	be	taken	as	the	
distance	between	end	supports	of	the	member.	The	stiffness	supplied	by	discrete	
bracing	and	sheathing	bracing	as	defined	in	AISI	S100	[CSA	S136]	Appendix	3	shall	
be	included	when	determining	the	global	buckling	stress,	Fcre,	per	Appendix	2	of	AISI	
S100	[CSAS136].	

In	determining	the	distortional	buckling	strength,	the	rotational	stiffness,	kφ,	
provided	by	the	sheathing	or	deck	to	the	wall	stud	shall	be	determined	in	
accordance	with	Appendix	1	and	additional	rotational	restraint	provided	by	discrete	
bracing	is	permitted	to	be	considered	in	determining	the	elastic	distortional	
buckling	force	in	accordance	with	Sections	2.3.1.3	and	2.3.2.3	(as	applicable)	of	AISI	
S100	[CSA	S136]	Appendix	2.	

To	prevent	failure	of	the	sheathing-to-wall	stud	connection,	the	bearing	and	pull-
through	strength	of	the	connection	shall	be	greater	than	4%	of	the	design	
compression	force	in	the	member	divided	by	the	number	of	fasteners	along	the	
length	of	the	member.	

B3.2.2 Bending  

Wall	studs	shall	be	designed	for	bending	either	on	the	basis	of	all	steel	design	or	on	the	basis	of	
sheathing	braced	design,	in	accordance	with	the	following:		

(a)		All	Steel	Design.	For	all	steel	design,	Chapter	F	of	AISI	S100	[CSA	S136]	shall	define	the	
available	flexural	strength	[factored	resistance].	For	distortional	buckling	if	the	discrete	
bracing	fully	restricts	rotation	of	the	compression	flange	about	the	web/flange	juncture,	the	
distance	between	braces	shall	be	used	as	Lm	in	accordance	with	Sections	2.3.2.3	and	2.3.4.3	
(as	applicable)	of	AISI	S100	[CSA	S136]	Appendix	2.	If	the	discrete	bracing	spaced	at	
distance	Lb	has	rotational	stiffness	k*φ	against	rotation	of	the	compression	flange	about	the	
web/flange	juncture	then	k*φ/Lb	shall	be	used	as	kφ	in	accordance	with	Sections	2.3.2.3	and	
2.3.4.3	(as	applicable)	of	AISI	S100	[CSA	S136]	Appendix	2.	(Draft	Ballot	CB3)	

AISI Committee on Framing Standards  Committee and Subcommittee Ballot: MS19-13A 
Framing Deign Subcommittee  Attachment A 
  Date: April 3, 2019 

shall be taken as the distance between end supports of the member, while unbraced 
lengths Ly and Lt shall be taken as the distance between braces. If the discrete bracing 
restricts rotation of both flanges about the web/flange juncture, the distance between 
braces shall be used as Lm in determining the distortional buckling force in 
accordance with Sections 2.3.1.3 and 2.3.2.3 (as applicable) of AISI S100 [CSA S136] 
Appendix 2. 

(b) Sheathing Braced Design. For sheathing braced design of wall studs in compression, 
the available axial strength [factored resistance] shall be determined in accordance with 
Section C4.1Chapter E of AISI S100 [CSA S136]. The unbraced length with respect to 
the major axis, Lx, shall be taken as the distance between end supports of the 
member. The unbraced length with respect to the minor axis, Ly, and the unbraced 
length for torsion, Lt, shall be taken as twice the distance between sheathing 
connectors. The buckling coefficients Kx, Ky, and Kt shall be taken as unity. In 
determining the distortional buckling strength, the rotational stiffness, kI, provided 
by the sheathing or deck to the wall stud shall be determined in accordance with 
Appendix 1. 

  To prevent failure of the sheathing-to-wall stud connection, where identical gypsum 
sheathing is attached to both sides of the wall stud with screws spaced at a maximum 
of 12 inches (305 mm) on center, the maximum axial nominal load [specified load] in the 
wall stud shall be limited to the values given in Table B3.2-1. 

 
Table B3.2-1 

Maximum Axial Nominal Load [Specified Load] 
Limited by Gypsum Sheathing-to-Wall Stud Connection Capacity 

 

 

 

 

 

B3.2.1.2  Distortional Buckling 

Wall studs shall be designed either on the basis of all steel design or on the basis of 
sheathing braced design, in accordance with the following: 
(a) All Steel Design. For all steel design, compression shall be evaluated in accordance 

with Section C4.2 of AISI S100 [CSA S136]. If the discrete bracing restricts rotation of 
both flanges about the web/flange juncture, the distance between braces shall be used 
as Lm when applying AISI S100 [CSA S136]. 

(b) Sheathing Braced Design. For sheathing braced design, compression shall be 
evaluated in accordance with Section C4.2 of AISI S100 [CSA S136]. The rotational 
stiffness, kI, provided by the sheathing or deck to the wall stud shall be determined 
in accordance with Appendix 1. 

B3.2.2 Bending 

The available flexural strength [factored resistance] of wall stud shall be the lesser of the 

Gypsum Sheathing Screw Size 
Maximum Nominal [Specified] 

Stud Axial Load 
1/2 inch (12.7 mm) No. 6 5.8 kips (25.8 kN) 
1/2 inch (12.7 mm) No. 8 6.7 kips (29.8 kN) 
5/8 inch (15.9 mm) No. 6 6.8 kips (30.2 kN) 
5/8 inch (15.9 mm) No. 8 7.8 kips (34.7 kN) 
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available	flexural	strength	[factored	resistance].		

(b)		Sheathing	Braced	Design.	For	sheathing	braced	design	of	wall	studs	in	bending	the	
available	flexural	strength	[factored	resistance]	shall	be	determined	in	accordance	with	
Chapter	F	of	AISI	S100	[CSA	S136]	following	either	(i)	the	simplified	method	or	(ii)	the	
analysis	method.	

(i)	simplified	method:,	and	for	sheathing	attached	at	12	in.	on	center	or	less,	global	
buckling	need	not	be	considered	and	local	buckling	strength	shall	be	determined	in	
accordance	with	Section	F3	of	AISI	S100	[CSA	S136]	assuming	full	rotational	
restraint	provided	by	the	sheathing,	the	available	flexural	strength	[factored	
resistance]	shall	be	the	strength	determined	in	accordance	with	Section	F3	with	Fn	=	
Fy	or	Mne	=	My	and	the	strength	determined	in	accordance	with	Section	F4	of	AISI	
S100	[CSA	S136].	

In	determining	the	distortional	buckling	strength,	the	rotational	stiffness,	kφ,	
provided	by	the	sheathing	to	the	compression	flange	of	the	wall	stud	shall	be	
determined	in	accordance	with	Appendix	1	

(ii)	analysis	method:	The	stiffness	supplied	by	discrete	bracing	and	sheathing	
bracing	as	defined	in	AISI	S100	[CSA	S136]	Appendix	3	shall	be	included	when	
determining	the	global	buckling	stress,	Fcre,	per	Appendix	2	of	AISI	S100	[CSAS136].	
It	is	permitted	to	consider	inelastic	reserve	per	Section	F2.4.	

In	determining	the	distortional	buckling	strength,	the	rotational	stiffness,	kφ,	
provided	by	the	sheathing	or	deck	to	the	wall	stud	shall	be	determined	in	
accordance	with	Appendix	1	and	additional	rotational	restraint	provided	by	discrete	
bracing	is	permitted	to	be	considered	in	determining	the	elastic	distortional	
buckling	moment	in	accordance	with	Sections	2.3.2.3	and	2.3.4.3	(as	applicable)	of	
AISI	S100	[CSA	S136]	Appendix	2.	

To	prevent	failure	of	the	sheathing-to-wall	stud	connection	the	bearing	strength	of	
the	connection	shall	be	greater	than	the	torsional	demand	tributary	to	the	fastener	
divided	by	the	½	the	web	width	and	the	pull-through	strength	of	the	connection	
shall	be	greater	than	the	torsional	demand	tributary	to	the	fastener	divided	by	½	
the	flange	width.	The	torsional	demand	tributary	to	the	fastener	is	𝑤M𝑑N𝑒	where	𝑤M 	
is	the	distributed	line	load	transverse	to	the	stud,	𝑑N	is	the	length	tributary	to	the	
fastener	(i.e.,	the	fastener	spacing)	and	𝑒	is	the	distance	from	the	shear	center	of	the	
stud	to	the	line	of	load	application.		

B3.4 Bracing 

B3.4.1 Intermediate Brace Design  

B3.4.1.1	For	bending	members,	each	intermediate	brace	shall	be	designed	in	accordance	with	
Section	C2.2.1	of	AISI	S100	[CSA	S136].	 
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B3.4.1.2	For	axial	loaded	members,	each	intermediate	brace	shall	be	designed	in	accordance	with	
Section	C2.3	of	AISI	S100	[CSA	S136];	however,	it	shall	be	permitted	for	each	intermediate	brace	to	
be	designed	for	2%	of	the	design	compression	force	in	the	member.	 

B3.4.1.3	For	combined	bending	and	axial	loads,	each	intermediate	brace	shall	be	designed	for	the	
combined	brace	force	from	bending	determined	in	accordance	with	Section	C2.2.1	of	AISI	S100	
[CSA	S136]	and	from	compression	determined	in	accordance	with	Section	C2.3	of	AISI	[CSA	S136]	
or	2%	of	the	design	compression	force	in	the	member.	

B3.4.1.4	In	all	steel	design	accumulation	of	brace	forces	shall	be	considered.	

B3.4.1.5	In	sheathing	braced	design	accumulation	of	brace	forces	need	not	be	considered,	except	
when	evaluating	per	the	load	combination	of	B1.2.2.4	in	the	condition	when	bracing	from	sheathing	
is	not	permitted.	When	intermediate	discrete	braces	and	sheathing	bracing	are	both	resisting	
buckling	of	the	wall	stud	the	relative	stiffness	may	be	used	to	determine	the	demands	on	the	
intermediate	braces	when	evaluating	per	the	criteria	of	B3.4.1.1,	B3.4.1.2,	or	B3.4.1.3.			 
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6 Recommendations 
The ballots provided in the previous section give a clear picture of what would be required to 
implement combined bracing wall stud design in AISI S240 and AISI S100. However, the test-to-
predicted ratios consistently less than 1.0 for the small testing sample suggest some caution before 
adoption. Conservative adjustment of the resistance and safety factors may be possible.   
Additional testing should be conducted. The testing should consider 6 in. and potentially 8 in. deep 
studs that have greater reductions due to local buckling than the 362S162-68 [50ksi] tested here, 
and potentially those studs where distortional bucking (narrow flanges cause this) is predicted to 
control the capacity. Examination of studs with higher gravity loads (i.e. larger compressive 
capacity), and as a result higher connection forces, is also recommended. 
Criteria for defining when sheathing can be considered in design is needed. In Ballot CB2 proposed 
herein the following language is developed “sheathing	that	is	in-place	during	construction	and	able	
to	withstand	sprinklers	or	other	environmental	conditions	expected	during	the	life	of	the	assembly	
without	substantial	loss	in	stiffness.” This is useful but substantial loss in stiffness is not quantified. 
In the past the stiffness of gypsum board sheathing to steel shear connections under different 
humidity conditions has been examined and is known to be significant. With the elastic buckling 
tools now in place it is possible to perform a parametric study to demonstrate the sensitivity of the 
predicted stud strength to degradation in sheathing stiffness – if targets for allowed strength 
degradation are established then it would be possible to quantify what is a “substantial loss in 
stiffness” and provide engineers with usable guidance. This study is recommended. 
The proposed analysis method was fully implemented in spreadsheets for SFIA shapes. If expert 
opinion could agree on wall stud assembly parameters: stud height and spacing; bridging size, 
connection, and termination; strapping size and connection (if present); sheathing type and stud-
to-sheathing details, then design strength tables could be readily generated. Such tables could be 
generated and aligned with AISI S100 alone, or enabled with specific details from AISI S240.  
Of previous (SB1-SB13 in Table 2) and proposed ballots (CB1-CB5) the following ballot 
recommendations are made. 

High Priority (do now) 

• Develop and complete AISI S100 Appendix 3 to provide engineers a clear means to establish 
stiffness of connections and other elements that are critical in defining the behavior of CFS 
systems. This addresses previous SB Ballots 1,3,4, and 11 and enables the CB ballots. 

• Process CB Ballot 1 to broadly enable combined bracing of wall studs in AISI S100. 

• Advance SB Ballot 12 which provides needed connection capacity calculations for sheathing. 

Medium Priority (initiate soon) 

• Advance CB Ballot 3 to clean up all steel design and align with AISI S100. 

• Add additional elastic buckling solutions to AISI S100 Appendix 2 and commentary, 
addressing SB ballots 6, 8 and 9. 

Low Priority (initiate when additional work/discussion completed) 

• Enable S240 specific combined bracing design with ballots CB2 and 4.   
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7 Conclusions 
 
Cold-formed steel walls rely on both discrete bracing and sheathing bracing of the wall studs in 
real assemblies to achieve successful performance under gravity loads. When sheathing is not yet 
in place, e.g. during construction using on-site stick building methods, or when sheathing is 
compromised, e.g. due to sprinklers or prolonged high levels of humidity that degrade some 
sheathing materials, steel discrete bracing is critical; however, in all other situations the relative 
stiffness of sheathing bracing is such that the sheathing is the primary means of bracing the stud. 
Design methods which consider only discrete bracing indicate large accumulation of forces in the 
provided braces; however, if sheathing is also present this accumulation does not readily occur. 
Combined discrete and sheathing bracing is an important benefit of typical cold-formed steel wall 
assemblies, but these benefits are not currently enabled in design through AISI S240 or AISI S100. 
Compression tests of a typical wall assembly demonstrate that when sheathing is present the 
bridging need not be resolved at the wall ends. Gypsum sheathing on both sides of the wall leads 
to higher strength and a more favorable failure mode and post-peak response than fully resolved 
discrete bridging. Further, with respect to ultimate response, it is shown that the sheathing can be 
applied after service dead load without changing the bracing condition. Finally, we also show that 
one-sided sheathing can provide bracing at least as effective as a fully anchored discrete bridging; 
however, to achieve the most desirable limit state, strength, and post-peak response two-sided 
sheathing is favored. 
A complete suite of spreadsheets was prepared for aiding the engineer in calculating the elastic 
local, distortional, and global buckling load of a wall stud considering both discrete bracing and 
sheathing bracing. The spreadsheets were utilized to predict the strength of the tested walls and it 
was found that the predictions of the walls tested in this effort with combined bracing are currently 
unconservative. This contrasts with previously tested walls with only sheathing bracing that were 
predicted conservatively. This result suggests at least a modest amount of additional work is 
needed. Recommendations are provided for this additional work. A complete suite of ballots was 
provided that would enable combined bracing to be utilized by engineers employing future editions 
of AISI S240 and AISI S100 in their designs.  
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Appendix: Written Example of Predicted Strength 
 
Complete examples are given in the accompanying spreadsheets and video explainer. A brief 
written example is provided here for additional reference. 
Details: Similar to the wall tested in this project, consider an 8 ft × 8 ft CFS wall with 362S162-
68 [50 ksi] studs spaced 2 ft apart and attached at top and bottom to two 8-ft long 362T125-68 [50 
ksi] tracks. The studs have standard obround punchouts with dimensions of 1 1/2 in. x 4 in. 
150U150-54 CRC bridging is utilized through the punchout at the mid-height of the stud. The CRC 
bridging is attached to the studs with a 1 ½ in. x 1 ½ in. 54 mil angle connected with #10 steel-to-
steel fasteners. The CRC bridging is anchored to a fixed support at one end. Also ½ in. lightweight 
sheetrock (installed vertically) with #6 @ 12 in. o.c. screw fasteners is attached to one side of the 
wall. 

 
Objective: What is the nominal strength of a typical stud in this wall? 
Solution: 

Find the squash load and net squash load of the stud: 

 𝑃- = 𝐴/𝐹- = 0.524𝑖𝑛8 × 50𝑘𝑠𝑖 = 26.2	𝑘𝑖𝑝𝑠 

𝐴/  can be found from the SFIA Technical Catalog or AISI D100 and is also 
automatically calculated in spreadsheet 01_Pcre_analytical_v10 once the stud 
section is selected based on SFIA tables. 

 𝑃-6%7 = 𝐴6%7𝐹- = 0.4166𝑖𝑛8 × 50𝑘𝑠𝑖 = 20.8	𝑘𝑖𝑝𝑠 
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𝐴6%7 is not conveniently available in the SFIA Technical Catalog or AISI D100, 
but it is automatically calculated in spreadsheet 01_Pcre_analytical_v10 once the 
stud section is selected based on the standard punchout defined in the SFIA 
Technical Catalog. 

Note, 𝑃-6%7  is a practical upperbound. If this is a design problem this is the 
maximum capacity this stud will be able to withstand under fully braced and fully 
effective conditions. If this capacity is insufficient a new section should be selected 
before continuing with more involved calculations. 

Global Buckling: 

Elastic Critical Global Buckling, 𝑃!"% 
The CRC bridging and gypsum board attached to one side of the stud have a strong influence on 
the global buckling strength. The spreadsheet “01_Pcre_analytical_v10” provides the calculation 
details. However the major steps are as follows: (1) find the spring stiffness for the CRC bridging 
system, (2) find the spring stiffness for the gypsum sheathing, (3) find the elastic critical global 
buckling load using these spring stiffness values. 

(1) Stiffness of CRC bridging system 
 In-plane lateral stiffness 

 𝛽 = J𝛽!566%!7956:3 + 𝛽;"9$/96/:3 + 𝛽27"56/;<!=:3 L:3 

𝛽!566%!7956 = 7.02	𝑘𝑖𝑝/𝑖𝑛. is the stiffness of the clip and fastener to the stud, this 
has been tested, and is referenced in the “01_Pcre_analytical_v10” spreadsheet. 
Interpolation of the tested data which is sensitive (primarily) to the stud thickness 
is utilized. 

𝛽;"9$96/ = 𝐸𝐴/𝐿 = 39.95	𝑘𝑖𝑝/𝑖𝑛. is the stiffness of the CRC bridging. Here we 
have chosen the stud farthest from the supported end (strongback end) and 𝐿 =96 
in., 𝐴 of the CRC is automatically taken from SFIA tables based on the designation 
in the “01_Pcre_analytical_v10” spreadsheet. 

𝛽27"56/;<!= termed 𝛽;"<!%in the spreadsheet is the stiffness of the support for the 
CRC bridging. In practice this might be the bending stiffness of a strong back, axial 
stiffness of a kicker, etc. Here we assume termination to a fixed support and use an 
artificially high value of 1000 kip/in. to eliminate this flexibility. 

 𝛽 = 5.94	𝑘𝑖𝑝/𝑖𝑛. also known as 𝑘, in the calculations, and is applied at mid height. 

 Torsional stiffness 

 𝛽> = 14.8	𝑘𝑖𝑝 − 𝑖𝑛./𝑟𝑎𝑑 
This is the torsional stiffness the clip fastened CRC bridging provides to a stud – 
this is based on tests, and is referenced in the “01_Pcre_analytical_v10” 
spreadsheet. Interpolation of the tested data which is sensitive (primarily) to the 
stud depth and thickness is utilized. 𝛽> is also known as 𝑘. in the calculations. 
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(2) Stiffness of Fastened Gypsum Sheathing 
 In-plane lateral stiffness 

 𝑘, = (𝑘,?:3 + 𝑘,$:3):3 

𝑘,? = 2.779	𝑘𝑖𝑝/𝑖𝑛. is the in-plane stiffness of stud-fastener-gypsum connection 
and can be based on formulas developed in the sheathing bracing project or on 
testing. The formula from Schafer (2013) is implemented here: 

𝑘,? =
@AB$!7"

47#
$(DA$!E3F7#7)

  

where 𝐸 is Young’s modulus of the steel, 𝑡 is the thickness of the flange of the stud, 
𝑑 is the diameter of the fastener, and 𝑡; is the thickness of the gypsum board, see 
spreadsheet for intermediate calculations. 

𝑘,$ = 12.337	𝑘𝑖𝑝/𝑖𝑛.  is the in-plane stiffness of the gypsum sheathing, the 
formula from Schafer (2013) is implemented here: 

𝑘,$ =
A$H#7#$%

!0&%
I$

  

where 𝑑J  is the distance between fasteners, 𝑤7J  is the width of the sheathing 
tributary to the fastener, 𝐺; is the shear modulus of the gypsum which can come 
from testing or bounds provided from the Gypsum Association (lowerbound used 
here), 𝑡;  is the thickness of the gypsum sheathing board, and 𝐿 is the sheathing 
height, see spreadsheet for full implementation. 

 𝑘, = 2.268	𝑘𝑖𝑝/𝑖𝑛.  
 Torsional Stiffness 

 𝑘. = 0.989	𝑘𝑖𝑝 − 𝑖𝑛./𝑟𝑎𝑑 

The torsional stiffness is the same calculation used in distortional buckling and 
already explained in AISI S240-15 Appendix 1. Contributions from both the local 
connection stiffness and the gypsum are both considered in series. Here the local 
stiffness, not the foundation stiffness (i.e. per unit length), is employed. 

 Out-of-plane stiffness 

 𝑘- = 0.005	𝑘𝑖𝑝/𝑖𝑛. 

The out-of-plane stiffness is a means to account for the gypsum sheathing 
contribution in major-axis bending of the studs. Schafer (2013) defines this as 
follows: 

 𝑘- =
(BK)'A!$%

I!
 

where 𝑑J is the distance between fasteners, 𝐿 is the sheathing height, and (𝐸𝐼)0 is 
the additional bending rigidity contributed by the sheathing. If composite action is 
ignored it is just the EI of the sheathing alone, e.g., from GA-235-10 for gypsum 
sheathing. If composite action is included then the contribution is back-calculated 
from tested stiffness – Schafer (2013) provides details. Here composite action is 
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ignored and tabulated values from the Gypsum Association are employed – and 
effectively the amount is small enough it could be ignored.  

        Summary of Springs 

 
at mid-height from the CRC bridging system the stud has spring 𝑘,9 = 𝛽 and spring 
𝑘.9 = 𝛽> located mid-web 

every 12 in. o.c. up the height developed from the screw fastened gypsum board 
the stud has springs 𝑘,, 𝑘-, and 𝑘. located mid-flange of one flange. 

(3) Elastic critical global buckling load  
The specific formula for the elastic critical global buckling load are given in this report and 
implemented in 01_Pcre_analytical_v10.  
Note, the member itself has holes, so the spreadsheet 01_Pcre_analytical_v10 implements 
the reduced average global properties (𝐼, 𝐶0, etc.) recommended by AISI S100 to account 
for this effect. These properties are calculated for all SFIA sections and provided in the 
spreadsheet – these properties are not provided in the SFIA Technical Catalog.  
The solution is: 

𝑃!"% = 22.49	𝑘𝑖𝑝𝑠 = 0.86𝑃-  

Note, the spreadsheet also provides the buckling mode in details which indicates the mode 
includes torsion as well as major- and minor-axis flexure (this is primarily due to having 
gypsum on one side only) and the lowest mode is the 2nd mode (this is primarily due to the 
large restraint provided by the CRC bridging at mid-height of the stud).  

Global Buckling Strength, 𝑃6% 
With the elastic buckling load and the squash load known the global buckling strength may be 
readily found using AISI S100 Chapter E. Specifically AISI S100 Section E2, Eq. E2-2 ad E2-3 
provides the solution and the formula are implemented in the spreadsheet 04_Pn_DSM_v2: 

𝑃6% = 16.1	𝑘𝑖𝑝𝑠  
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This is the global strength of the stud independent of local and distortional buckling. Since 
this value is less than 𝑃-6%7 this is now the new upperbound strength. Calculations continue 
if this capacity is adequate, otherwise a new section must be sought. 

Local buckling strength, 𝑃6ℓ 
The local buckling strength includes interaction with global buckling. Per AISI S100 Section E3 
this strength may be calculated by EWM or DSM – either is acceptable. For this example DSM is 
followed. The first step in the DSM approach is to provide the elastic critical local buckling load, 
this is provided for all SFIA sections in the spreadsheet 03_Pcrl_Pcrd_database_v2. 

 𝑃!"ℓ:65L5?% = 31.5	𝑘𝑖𝑝𝑠  

 𝑃!"ℓ:L5?% = 48.4	𝑘𝑖𝑝𝑠  
In this member local buckling away from the hole is at a lower elastic buckling load than 
in the net section. So the elastic critical local buckling load is therefore 

 𝑃!"ℓ = 31.5	𝑘𝑖𝑝𝑠  

With the elastic critical buckling load, 𝑃!"ℓ, and the global buckling strength 𝑃6%, the local 
buckling strength can be determined per AISI S100 Eq. E3.2.1-1 and -2 resulting in  

 𝑃6ℓ = 16.1	𝑘𝑖𝑝𝑠  

This value is lower than 𝑃-6%7  so this is the predicted local strength of the section as 
detailed in the spreadsheet 04_Pn_DSM_v2. 

Distortional buckling strength, 𝑃6$ 
The distortional buckling strength is calculated independently. The first step in the DSM approach 
is to provide the elastic critical local buckling load, this is provided for all SFIA sections in the 
spreadsheet 03_Pcrl_Pcrd_database_v2.  

 𝑃!"$:65L5?% = 38.4	𝑘𝑖𝑝𝑠  

 𝑃!"$:L5?% = 31.9	𝑘𝑖𝑝𝑠  
In this member the hole reduces the elastic distortional buckling load. So the elastic critical 
distortional buckling load is therefore: 

 𝑃!"$ = 31.9	𝑘𝑖𝑝𝑠,  

with the elastic critical buckling load, 𝑃!"$, and the squash load, 𝑃-, and net squash load, 
𝑃-6%7, the distortional strength 𝑃6$ can be determined per AISI S100 Section E4:  

 𝑃6$ = 17.99	𝑘𝑖𝑝𝑠  
 

Predicted nominal strength 

 𝑃6 = 𝑚𝑖𝑛(𝑃6% , 𝑃6ℓ, 𝑃6$) = 16.1	𝑘𝑖𝑝𝑠   
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